Russian Federation
Russian Federation
Russian Federation
Russian Federation
UDC 332.1
The study is based on an analysis of data on the development of innovation activity, socio-economic indicators in the agricultural regions of Russia. As a result of the study, factors contributing to the effective use of innovations in the agricultural sector are examined, and the impact of innovation activity on the main socio-economic indicators of the regions is assessed. A correlation analysis of socio-economic indicators with indicators of innovation activity in the agricultural regions of the Russian Federation was carried out. The produced typology of regions, depending on the dominant share of agriculture, forestry, hunting, and fishing in the sectoral structure of gross value added, made it possible to determine the boundaries of the range of intervals for the distribution of regions in terms of the number of organizations performing research work as a percentage of the gross regional product. Agrarian regions are ranked into three groups, based on the number of organizations performing research as a percentage the gross regional product. In the course of the study, the authors conclude that there is a significant imbalance in the innovative development of agricultural subjects of the Russian Federation. With an increase in the number of organizations performing research in an agricultural region as a percentage the gross regional product, the average indicators of socio-economic development of these regions increase significantly. This conclusion confirms the connection between innovative development and socio-economic development of agricultural regions predetermines that innovative activity plays an important role in the development of agricultural regions of Russia, improving their socio-economic indicators. Based on the study, it was revealed that more innovatively developed agricultural regions have higher indicators of socio-economic development. In the future, detailing the factors that contribute to the effective use of innovation can help agricultural regions develop measures aimed at stimulating innovation activity and achieving better socio-economic results.
agricultural region, innovation activity, modeling, socio-economic development, distribution of regions
1. Makasheva N.P. Gosudarstvennaya podderzhka i finansirovanie innovacionnoy deyatel'nosti v Rossii i stranah mira // Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika. 2013. № 3 (23).
2. Global'nyy innovacionnyy indeks 2022 goda URL: http://www.globalinnovationindex.org/ (data obrascheniya: 03.07.2023)
3. Zhilyakov D.I., Petrushina O.V., Novosel'skiy S.O., Zaychenko A.A. Analiz sostoyaniya i klyuchevyh tendenciy social'no-ekonomicheskogo razvitiya regiona v usloviyah global'noy nestabil'nosti // Uchet i statistika. 2023. № 1. S. 38-51
4. Soloshenko V. M., Veklenko V. I. Innovacionnye napravleniya povysheniya ustoychivosti razvitiya rastenievodstva // Vestnik Kurskoy gosudarstvennoy sel'skohozyaystvennoy akademii. 2016. № 5. S. 7-12.
5. Rabadanova R.M., Omarova E.Sh. Svyazi i zavisimosti mezhdu ekonomicheskimi pokazatelyami otraslevogo kompleksa (na primere RD) // Fundamental'nye issledovaniya. 2013. № 4–4. S. 945-949.
6. Dorofeev A.F., Zhilyakov D.I., Petrushina O.V., Novosel'skiy S.O. Retrospektivnyy analiz intensifikacii tehnologicheskogo razvitiya predpriyatiy APK // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2023. № 103. S. 35-44
7. Generalov I.G., Gubanova E.V., Losev A.N. Cifrovaya transformaciya zernovogo hozyaystva regiona // Vestnik NGIEI. 2022. № 5 (132). S. 104-112.
8. Adamadziev K.R., Ahmedov A.S. Prognozirovanie ekonomicheskih pokazateley regionov metodami modelirovaniya // Fundamental'nye issledovaniya. 2015. № 10-2. S. 330-335.
9. Kosnikov, S. N., Novikova D. N., Suhinenko D. D. Modelirovanie i prognozirovanie pokazateley social'no-ekonomicheskogo razvitiya // Estestvenno-gumanitarnye issledovaniya. 2022. № 41(3). S. 151-154.
10. Kormanovskaya I. R., Bernasovskaya L. I. Modelirovanie i prognozirovanie regional'nyh riskov v usloviyah neopredelennosti // Put' nauki. 2016. T. 1, № 9(31). S. 62-68.
11. Regiony Rossii. Social'no-ekonomicheskie pokazateli URL: https://rosstat.gov.ru/folder/210/document/13204 (data obrascheniya: 03.07.2023)
12. Nauka, innovacii i tehnologii URL: http://rosstat.gov.ru/statistics/science (data obrascheniya: 03.07.2023)
13. Nizomov S. S. Primenenie metodov korrelyacionno-regressionnogo i klasternogo analiza pri prognozirovanii urozhaynosti zernovyh kul'tur // Gumanitarnye i social'nye nauki. 2014. № 2. S. 768-772.
14. Kumbhakar, S.C.; Zhang, J.; Lien, G. Locationally Varying Production Technology and Productivity: The Case of Norwegian Farming. Econometrics 2023, 11, 20. http://doi.org/10.3390/econometrics11030020
15. Yusifov S. I., Novikova E. A. Ocenka investicionnoy privlekatel'nosti sel'skohozyaystvennoy otrasli Saratovskoy oblasti s pomosch'yu metodov korrelyacionno-regressionnogo analiza // Alleya nauki. 2018. T. 3, № 8(24). S. 190-197.
16. Magomedgadzhiev Sh. M., Gasanova N. R. Ocenka vliyaniya innovacionnoy deyatel'nosti na osnovnye social'no-ekonomicheskie pokazateli regionov Rossii s pomosch'yu metodov ekonometricheskogo modelirovaniya // Fundamental'nye issledovaniya. 2016. № 5-2. S. 371-376.
17. Dax, T.; Copus, A.; Ge, D. Diversity and Opportunities for Rural Development: Reflecting Awareness, Understanding and Activities in Rural Areas. World 2023, 4, 360-367. http://doi.org/10.3390/world4020023
18. Krivoshlykov V. S. Cenovaya elastichnost' sprosa na prodovol'stvennom rynke // Vestnik NGIEI. 2019. № 3(94). S. 107-120.
19. Jha, S.K.; Negi, A.K.; Negi, R.S.; Alatalo, J.M.; Jha, M.B. Prioritization of Socio-Ecological Indicators for Adaptation Action in Pauri District of Western Himalaya. World 2023, 4, 393-415. https://doi.org/10.3390/world4030025



