Stimulation of the photosynthetic apparatus in buckwheat plants of different years of selection under the influence of urea innoculated by the bacterium Bacillus Subtilis Ch-13
Abstract and keywords
Abstract (English):
The article presents the results of a two-year field study (2023-2024) aimed at identifying the key factors that determine the yield of buckwheat varieties Dikul and Dasha under the conditions of the use of traditional urea and urea treated with the B.s. Ch-13 crop. It has been established that the productivity of the crop depends only 50% on the degree of development of the photosynthetic apparatus, estimated through the ratio Σ ChL/carote (the sum of chlorophylls a and b to carotenoids). The aim of the study was to assess the effect of urea inoculated with the Bacillus subtilis Ch-13 strain on the activation of the photosynthetic apparatus in buckwheat plants of different breeding years, as well as to identify the dependence of stimulation efficiency on the physiological characteristics of varieties due to their breeding history. For the Dikul variety, exceeding the dose (N90) leads to a decrease in grain yield (2023: 13.7 c/ha; 2024: 12.5 c/ha) and an increase in straw (2023: 61.0 c/ha; 2024: 59.3 c/ha), which is associated with an imbalance of Σ ChL/Karot (>13) and the redistribution of assimilates into the vegetative mass. For the Dasha variety, modified nitrogen (N60m) increases yields by 8–10% compared to conventional N60, probably due to improved photosynthetic activity (Σ ChL/Karot ~10–11).

Keywords:
buckwheat, chlorophyll a, chlorophyll b, urea, B.s. Ch-13, photosynthesis, leaf area
Text
Text (PDF): Read Download
References

1. Breskina, G. M. Rol' biopreparatov i azotnyh udobreniy v formirovanii produktivnosti grechihi v usloviyah Kurskoy oblasti / G. M. Breskina, N. A. Chuyan // Rossiyskaya sel'skohozyaystvennaya nauka. 2021. № 2. S. 39-42. DOI:https://doi.org/10.31857/S2500262721020083. EDN ATZNFV

2. Dubenok N. N., Zayac O. A., Strizhakova E. A. Formirovanie produkcionnogo potenciala grechihi (Fagopyrum escukntum L.) v zavisimosti ot urovnya mineral'nogo pitaniya i sposoba poseva // Izvestiya Timiryazevskoy sel'skohozyaystvennoy akademii. 2017. №. 6. S. 29-41.

3. Kalmykova E. V., Mel'nik K. A., Kuz'min P. A. Vidovye razlichiya v soderzhanii fotosinteticheskih pigmentov u rasteniy aridnyh territoriy yuga Rossii // Agrarnyy vestnik Urala. 2023. №. 3 (232). S. 32-42.

4. Kononov A. S., Shkotova O. N. Vliyanie form azotnyh udobreniy na soderzhanie hlorofilla v odnovidovyh i smeshannyh bobovo-zlakovyh agrocenozah // Vestnik Bryanskogo gosudarstvennogo universiteta. 2012. №. 4 (1). S. 103-106.

5. Maslova T. G., Markovskaya E. F., Slemnev N. N. Funkcii karotinoidov v list'yah vysshih rasteniy (obzor) // Zhurnal obschey biologii. 2020. T. 81. №. 4. S. 297-310.

6. Napolova G. V., Napolov V. V. Formirovanie i struktura assimilyacionnogo apparata rasteniy grechihi // Vestnik agrarnoy nauki. 2006. №. 2-3 (2-3). S. 43-46.

7. Ocenka vliyaniya soderzhaniya hlorofilla v list'yah grechihi na urozhaynost' i biohimicheskie pokazateli zerna / O. A. Timoshinova, A. G. Klykov, R. V. Timoshinov, G. A. Murugova // Aktual'nye problemy nauki i praktiki v issledovaniyah molodyh uchenyh : Sbornik I mezhdunarodnoy nauchno-prakticheskoy konferencii, Novosibirsk, 21–22 maya 2024 goda. – Novosibirsk: IC NGAU "Zolotoy kolos", 2024. S. 183-186. EDN TGXLJF

8. Amelin A. et al. Effect of moisture on photosynthesis and transpiration of buckwheat leaves //E3S Web of Conferences. – EDP Sciences, 2023. – T. 390. – S. 02048.

9. Fang X. et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.) // Field Crops Research. 2018. T. 219. S. 160-168.

10. Jha R. et al. Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security // Trends in Food Science & Technology. 2024. T. 145. S. 104365.

11. Lei Q. et al. Effects of Bacillus subtilis on photosynthesis and yield of pakchoi under magnetoelectric brackish water irrigation // Scientia Horticulturae. 2025. T. 340. S. 113934.

12. Li C. F. et al. Increased grain yield with improved photosynthetic characters in modern maize parental lines // Journal of Integrative Agriculture. 2015. T. 14. №. 9. S. 1735-1744.

13. Maslennikova D. et al. Endophytic plant growth-promoting bacterium bacillus subtilis reduces the toxic effect of cadmium on wheat plants // Microorganisms. 2023. T. 11. №. 7. S. 1653.

14. Mohamed H. I., Gomaa E. Z. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress // Photosynthetica. 2012. T. 50. S. 263-272.

15. Moraes B. V. et al. Bacillus subtilis inoculated in organic compost could improve the root architecture and physiology of soybean under water deficit //Plant Physiology and Biochemistry. 2025. S. 109540.

16. Samaniego-Gámez B. Y. et al. Bacillus spp. inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants //Chilean journal of agricultural research. 2016. T. 76. №. 4. S. 409-416.

17. Siddika A. et al. Harnessing plant growth-promoting rhizobacteria, Bacillus subtilis and B. aryabhattai to combat salt stress in rice: a study on the regulation of antioxidant defense, ion homeostasis, and photosynthetic parameters // Frontiers in Plant Science. 2024. T. 15. S. 1419764.

18. Sun B. O. et al. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil //Soil Biology and Biochemistry. 2020. T. 148. S. 107911.

19. Yang L. et al. Exogenous Bacillus subtilis can reduce the damage caused by waste drilling fluid to ryegrass (Lolium perenne) // Plant Stress. 2024. T. 14. S. 100641.

20. Zhang Y. et al. Spatial variation of leaf chlorophyll in northern hemisphere grasslands // Frontiers in Plant Science. 2020. T. 11. S. 1244.

Login or Create
* Forgot password?